References
The following academic references were used in compiling this website. For published journal articles, a link has been provided to the abstract of the paper in question. In many cases, a personal or institutional subscription will be required to access the full-text article in PDF format.
Adrian, J., Torti, S. & Turck, F. (2009) From Decision to Commitment: The Molecular Memory of Flowering. Molecular Plant 2 (4): 628-642.
Anderson, H.T., Willis, J.H., & Mitchell-Olds, T. (2011) Evolutionary genetics of plant adaptation. Trends in Genetics 27 (7): 258-266
Atwell, B., Kridemann, P. & Turnbull, C. (1999) Plants In Action: Adaptation in nature, performance in cultivation, Macmillan Education, South Yarra, Victoria, Australia.
Bailey, J. ed. (1999) Dictionary of Plant Sciences, Penguin Books Ltd., London, United Kingdom.
Balao, F., Herrera, J., Talavera, S. & Dötterl, S. (2011) Spatial and temporal patterns of floral scent emission in Dianthus inoxianus and electroantennographic responses of its hawkmoth pollinator. Phytochemistry 72 (7): 601-609
Busch, M.A, Bomblies, K. & Weigel D. (1999) Activation of a floral homeotic gene in Arabidopsis, Science 285: 585-587.
Causier, B., Schwarz-Sommer, Z. & Davies, B. (2010) Floral organ identity: 20 years of ABCs. Seminars in Cell & Developmental Biology 21 (1): 73-79
Chandler, J.W. (2011) The Hormonal regulation of flower development. Journal of Plant Growth Regulation 30: 242-254
Clarke, I. & Lee, H. (1996) Name that Flower, University of Melbourne Press, Parkville, Victoria, Australia
Coen, E.S. & Meyerowitz, E.M. (1991) The war of the whorls: Genetic interactions controlling flower development, Nature 353: 31-37
Coen, E.S. (1991) The role of homeotic genes in flower development and evolution, Annual Reviews in Plant Physiology and Plant Molecular Biology 42: 241-79
Colombo, L., Franken, J., Koetje, E., van Went, J., Dons, H.J.M., Angenent, G.C. & van Tunen, A.J. (1995) The petunia MADS box geneFBP11 determines ovule identity. The Plant Cell 7 (11): 1859-1868
Dadpour, M.R., Movafeghi, A., Grigorian, W. & Omidi, Y. (2011) Determination of floral initiation in Malus domestica: a novel morphogenetic approach. Biologia Plantarum 55 (2): 243-252
Doyle, M.R., Davis, S.J., Bastow, R.M., McWatters, H.G, Kozma-Bognár, L., Nagy, F., Millar, A.J. & Amasino, R.M. (2002) The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419: 74-77
Favaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., Yanofsky, M.F., Kater, M.F. & Colombo, L. (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. The Plant Cell 15 (11): 2603–2611
Gattolin, S., Cirilli, M. et al (2020) Mutations in orthologous PETALOSA TOE-type genes cause a dominant double-flower phenotype in phylogenetically distant eudicots. Journal of Experimental Botany 71(9): 2585–2595
Gormus, O. & Yucel, C. (2002) Different planting date and potassium fertility effects on cotton yield and fibre properties in the Cukurova region, Turkey. Field Crops Research 78(2-3): 141-149
Hamlin, R.L. & Mills, H.A. (2001) Pansy floral development and nutrient absorption as influenced by temperature, nitrogen form, and stage of plant development, Journal of Plant Nutrition 24 (12): 1975-1985
Hamner, K.C. & Bonner, J. (1938) Photoperiodism in relation to hormones as factors in floral initiation and development, Botanical Gazette 101: 658-687
Handreck, K.A. & Black, N.D. (1999) Growing Media for Ornamental Plants and Turf, UNSW Press, Sydney, Australia.
Hasegawa, M., Yahara, T., Yasumoto, A. & Hotta, M. (2006) Bimodal distribution of flowering time in a natural hybrid population of daylily (Hemerocallis fulva) and nightlily (Hemerocallis citrina). Journal of Plant Research 119 (1): 63-68
Holland, M.A. & Polacco, J.C. (1994) PPFMs and other covert contaminants: is there more to plant physiology than just plant?, Annual Review of Plant Physiology and Plant Molecular Biology 45: 197-209
Holland, M.A. (1997) Occam's Razor applied to hormonology: are cytokinins produced by plants?, Plant Physiology 115: 865-868
Imaizumi, T. & Kay, S. (2006) Photoperiodic control of flowering: not only by coincidence. Trends in Plant Science 11 (11): 550-558
Jack, T. (2001) Relearning our ABCs: new twists on an old model. Trends in Plant Science 6 (7): 310-316
Jarillo, J.A. & Piñeiro, M. (2011) Timing is everything in plant development. The central role of floral repressors.Plant Science 181: 364-378
Koutinas, N. & Pepelyankov, G. (2010) The transition to flowering in apple. Biotechnology & Biotechnological Equipment 24 (1): 1544-1548
Krizek, B.A. & Fletcher, J.C. (2005) Molecular mechanisms of flower development: an armchair guide. Nature Reviews Genetics 6: 688–98
Krizek, B.A. (2011) Auxin regulation of Arabidopsis flower development involves members of the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) family. Journal of Experimental Botany 62 (10): 3311-3319
Leopold, A.C. & Thimann, K.V. (1949) The effect of auxin on flower initiation. American Journal of Botany 36 (4): 342-345
Liu, C., Thong, Z. & Yu, H. (2009) Coming into bloom: the specification of floral meristems. Development 136: 3379-3391
Ma, H. & de Pamphilis, C. (2000) The ABCs of Floral Evolution, Cell 101: 5-8
McDaniel, C.N. (1996) Developmental physiology of floral initiation in Nicotiana tabacum L. Journal of Experimental Botany 47 (4): 465-475
Mimida, N., Ureshino, A., Tanaka, N., Shigeta, N., Sato, N., Moriya-Tanaka, Y., Iwanami, H., Honda, C., Suzuki, A., Komori, S. & Wada, M. (2011) Expression patterns of several floral genes during flower initiation in the apical buds of apple (Malus ×domestica Borkh.) revealed by in situ hybridisation. Plant Cell Reports 30: 1485-1492
Mizukami, Y. & Ma, H. (1997) Determination of Arabidopsis floral meristem identity by AGAMOUS. Plant Cell9 (3): 393-408
Müller, B.M., Saedler, H. & Zachgo, S. (2001) The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development. The Plant Journal 28 (2): 169-179
Mutasa-Göttgens, E. & Hedden, P. (2009) Gibberellin as a factor in floral regulatory networks. Journal of Experimental Biology 60 (7): 1979-1989
Okamuro, J.K., den Boer, B.G.W., Lotys-Prass, C., Szeto, W. & Jofuku, K.D. (1996) Flowers into shoots: Photo and hormonal control of a meristem identity switch in Arabidopsis, Proceedings of the National Academy of Science USA 93: 13831-13836
Paz S.J., Jaime S., Soria J.T., Aguilar A. (1996) Response of the capsicum plant to different potassium and boron treatments .1. Aerial part, Agrochemica 40 (2-3): 73-78
Pelaz, S., Tapia-López, R., Alvarez-Buyylla, E.R., Yanofsky, M.F. (2000) Conversion of leaves into petals in Arabidopsis. Current Biology 11:182–184
Piñero, M. & Coupland, G. (1998) The control of flowering time and floral identity in Arabidopsis, Plant Physiology 117: 1-8.
Pinyopich, A., Ditta, G.S., Savidge, B., Liljegren, S.J., Baumann, E., Wisman, E. & Yanofsky, M.F. (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424: 85-88
Protacio, C.M. (2000) A model for potassium nitrate-induced flowering in Mango, Acta Horticulturæ 509 (Abstract).
Quaggio, J.A., Mattos, D., Cantarella, H., Almeida, E.L.E. & Cardoso, S.A.B. (2002) Lemon yield and fruit quality affected by NPK fertilisation, Scientia Horticulturæ 96 (1-4): 151-162
Remay, A., Lalanne, D., Thourouse, T., Le Couvier, F., Hibrand-Saint Oyant, L. & Foucher, F. (2009) A survey of flowering genes reveals the role of gibberellins in floral control in rose. Theoretical and Applied Genetics 119: 767-781
Ridge, I. (1991) Plant Physiology, Hodder & Stoughton, United Kingdom.
Saedler, H., Becker, A., Winter,K.-U., Kirchner, C. & Theißen, G. (2001) MADS-box genes are involved in floral development and evolution. Acta Biochimica Polonica 48 (2): 351-358
Sather, D.N., Jovanovic, M. & Golenberg, E.M. (2010) Functional analysis of B and C class floral organ genes in spinach demonstrates their role in sexual dimorphism. BMC Plant Biology 10 (46): 1-14
Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H. & Sommer, H. (1990) Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majus. Science 250 (4983): 931-936
Sheldon, C.C., Burn, J.E., Perez, P.P., Metzger, J., Edwards, J.A., Peacock, W.J., Dennis, E.S. (1999) The FLF MADS Box Gene: A Repressor of Flowering in Arabidopsis Regulated by Vernalisation and Methylation Plant Cell 11:445–458
Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J. & Dennis, E.S. (2000) The molecular basis of vernalisation: The central role of FLOWERING LOCUS C (FLC), Proceedings of the National Academy of Sciences USA 97 (7): 3753-3758
Simon, S. & Petrášek, J. (2011) Why plants need more than one type of auxin. Plant Science 180 (3): 454-460
Soltis, D.E., Chanderbali, A.S., Kim, S., Buzgo, M. & Soltis, P. (2007) The ABC Model and its applicability to basal angiosperms. Annals of Botany 100: 155-163
Sommer, H. Beltrán, J.P., Huijser, P., Pape, H., Lönnig, W.E., Saedler, H. & Schwarz-Sommer, Z. (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors.The EMBO Journal 9 (3): 605–613
Sumitomo, K., Li, T. & Hisamatsu, T. (2009) Gibberellin promotes flowering of chrysanthemum by upregulating CmFL, a chrysanthemum FLORICAULA/LEAFY homologous gene. Plant Science 176 (5): 643-649
Sun, B., Xu, Y., Ng, K.-H., Ito, T. (2009) A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes and Development 23: 1791-1804
Tan, D.K.Y., Birch, C.J., Wearing, A.H. & Rickert, K.G. (2000) Predicting broccoli development I. Development is predominantly determined by temperature rather than photoperiod. Scientia Horticulturae 84: 227-243
Taiz, L. & Zeiger, E. (1998) Plant Physiology, Second Edition, Sinauer Associates, Sunderland, Massachusetts, United States of America.
Theißen, G. (2001) Development of floral organ identity: stories from the MADS house. Current Opinion in Plant Biology 4:75–85
Theißen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Münster, T., Winter, K.U. & Saedler, H. (2000) A short history of MADS-box genes in plants. Plant Molecular Biology 42 (1): 115-49.
Thomas, B. (1993) Internal and external controls on flowering, in Jordan, B.R. (1993) The Molecular Biology of Flowering, C.A.B. International, Wallingford, Oxford, United Kingdom.
Tooke, F., Ordidge, M., Chiurugwi, T. & Battey, N. (2005) Mechanisms and function of flower and inflorescence reversion. Journal of Experimental Botany 56 (420): 2587-2599
Turnbull, C. (2011) Long-distance regulation of flowering time. Journal of Experimental Botany 62 (13): 4399-4413
Ulijasz, A.T., Cornilescu, G., Cornilescu, C.C., Zhang, J., Rivera, M., Markley, J.L. & Vierstra, R.D. (2010) Structural basis for the photoconversion of a phytochrome to the activated Pfr form. Nature 463: 250-254
Wagner, D., Sablowski, R.W.M. & Meyerowitz, E.M. (1999) Transcriptional activation of APETALA1 by LEAFY. Science 285: 582-584
Watson, A., Ghosh, S., Williams, M.J. et al. (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants 4: 23–29.
Weigel, D. & Nilsson, O. (2002) A developmental switch sufficient for flower initiation in diverse plants. Nature 377 (6549): 495-500.
Wellmer, F. & Riechmann, J.L. (2010) Gene networks controlling the initiation of flower development. Trends in Genetics 26 (12): 519-527
Yaish, M.W., Colasanti, J. & Rothstein, S.J. (2011) The role of epigenetic processes in controlling flowering time in plants exposed to stress. Journal of Experimental Botany 62 (11): 3727-3735
Yant, L. Mathieu, J. & Schmid, M. (2009) Just say no: floral repressors help Arabidopsis bide the time. Current Opinion in Plant Biology 12: 580–586
Yeh, D.M. & Chiang, H.H. (2001) Growth and flower initiation in hydrangea as affected by root restriction and defoliation.Scientia Horticulturae 91 (1-2): 123-132
Zeevaart, J.A.D. (2008) Leaf-produced floral signals. Current Opinion in Plant Biology 11: 541-547